Substances That Could be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800) 426-4791.

206 S. 6th Street Fort Pierce, FL 34950

426-4791 or http://water.epa.gov/drink/hotline. available from the Safe Drinking Water Hotline at (800) Cryptosporidium and other microbial contaminants are on appropriate means to lessen the risk of infection by (Centers for Disease Control and Prevention) guidelines from their health care providers. The U.S. EPA/CDC These people should seek advice about drinking water infants may be particularly at risk from infections. or other immune system disorders, some elderly, and undergone organ transplants, people with HIV/AIDS cancer undergoing chemotherapy, persons who have Immunocompromised persons such as persons with in drinking water than the general population. Some people may be more vulnerable to contaminants

Important Health Information

result of those potential sources of contamination. Additionally, FPUA has built treatment systems as a Customer Service Department at (772) 466-1600. fl.us/swapp or they can be obtained by calling FPUA's and Protection Program website at www.dep.state. are available on the FDEP Source Water Assessment moderate susceptibility level. The assessment results contamination identified for this system with a low to vicinity of our wells. There are 11 potential sources of about any potential sources of contamination in the The assessment was conducted to provide information performed a Source Water Assessment on our system. In 2014, the Department of Environmental Protection Fort Pierce Utilities Authority

pw/exesum.asp. out their website at ww.nrdc.org/water/drinking/ For a detailed discussion on the NRDC study results, check

far less than what you would pay for bottled water. filter device on your tap, your annual expenditure would be water would cost about 49 cents. Even if you installed a could spend up to \$1,400 annually. The same amount of tap recommended eight glasses a day from bottled water, you water than they typically do for tap water. If you get your People spend 10,000 times more per gallon for bottled

of all bottled water sold in the United States. within the same state, which accounts for about 70 percent completely exempts bottled water that's packaged and sold unsuitable for babies and young children. Further, the FDA high mineral content of some bottled waters makes them the U.S. EPA for community tap water. For instance, the rigorous testing and purity standards than those required by regulating bottled water, but these rules allow for less The Food and Drug Administration is responsible for

water (40 percent according to government estimates). about 25 percent of bottled water is actually just bottled tap necessarily cleaner or safer than most tap water. In fact, Natural Resources Defense Council, bottled water is not However, according to a four-year study conducted by the purchased in bottles is a healthier alternative to tap water. industry has successfully convinced us all that water Thanks in part to aggressive marketing, the bottled water

Tap vs. Bottled

purposes and then fluoridated for dental health reasons. treatment. The water is chlorinated for disinfection aeration, and sand filtration combined with reverse osmosis removes contaminants by conventional lime softening, FPUA's Water Treatment Plant treats the groundwater and

feet below the surface. the surface, and the Floridan Aquifer, which is about 1,000 from the Surficial Aquifer, which is about 100 feet below FPUA obtains water from two sources - groundwater

Source of FPUA's Drinking Water

2014

Water Quality Report

con mucho gusto le asistiremos. de Fort Pierce Utilities Authority al (772) 466-1600 y reporte, llame a la Division de Asuntos del Consumidor Si usted no cuenta con alguien que pueda traducirle este

PARA LOS CLIENTES HISPANOS

(City Hall), Fort Pierce, Florida. Tuesday of each month at 4:00 p.m. at 100 N. U. S. 1 Board meetings which are held on the first and third community participation and invite you to attend our best allies. Additionally, please note that we encourage in this report. After all, well-informed customers are our Please share with us your thoughts about the information

Este es un reporte importante sobre la calidad de su agua.

with quality drinking water.

allowing us to continue providing you and your family serve the needs of all of our water users. Thank you for community outreach and education while continuing to source water protection, water conservation, and vigilant in meeting the challenges of new regulations, quality drinking water possible. To that end, we remain As in years past, we are committed to delivering the best

annually.

for sampling that is required less frequently than most recent testing done in accordance with regulations excellent quality. The data presented is from 2014 or the this report will show that your drinking water is of SDWA requirements. Review of the tables contained in compounds to determine if your drinking water meets the AUAH tests for a variety of regulated and unregulated

their water.

provide customers with an annual report on the quality of Beginning in 1999, all community water systems need to pursuant to the EPA Safe Drinking Water Act (SDWA). Agency's (EPA) regulations. This report is furnished Florida and the United States Environmental Protection Pierce Utilities Authority (FPUA) meets the State of We are proud to report that the water provided by Fort

Sampling Results

During the past year we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. The state allows us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Inorganic Contaminants¹

Contaminant and	Dates of	MCL	Level	Range of			
Unit of Measurement	Sampling	Violation	Detected	Results	MCLG	MCL	Likely Source of Contamination
	(mo./yr.)	Y/N					
Antimony (ppb)	1/22/2014	N	1.3	0.55 - 1.3	6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Barium (ppm)	1/22/2014	N	0.0038	0.0036 <i>-</i> 0.0038	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Fluoride (ppm)	1/2014 <i>-</i> 12/2014	N	1.0	0.17 - 1.0	4.0	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate (as N; ppm)	1/22/2014	N	0.087	0.049 <i>-</i> 0.087	10	10	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Sodium (ppm)	1/22/2014	N	41.8	41.4 - 41.8	160	160	Salt water intrusion: leaching from soil.

Stage 1 Disinfectant/Disinfection By-Product (D/DBP) Parameters

Contaminant and	Dates of	MCL	Level	Range of	MCLG or	MCL or	
Unit of Measurement	Sampling	Violation	Detected	Results	MRDLG	MRDL	Likely Source of Contamination
	(mo./yr.)	Y/N					
Chloramines (ppm) ²	1/2014 <i>-</i> 12/2014	N	3.8	0.6 - 4.4	4	4.0	Water additive used to control microbes.

Stage 2 Disinfectant/Disinfection By-Product (D/DBP) Parameters

	5.4	MOI			MOLO	MOL	
Contaminant and	Dates of	MCL	Level	Range of	MCLG or	MCL or	
Unit of Measurement	Sampling	Violation	Detected	Results	MRDLG	MRDL	Likely Source of Contamination
	(mo./yr.)	Y/N					
Total Trihalomethanes	1/2014 -	N	30.0	16.1 - 48.6	N/A	80	By-product of drinking water chlorination.
(TTHM; ppb) ³	12/2014	IN	30.0	10.1 - 46.0	IN/A	80	by-product of drinking water chlorination.
Haloacetic Acids Five	1/2 0 14 -	N	26.8	15.6 <i>-</i> 29.2	N/A	60	By-product of drinking water chlorination.
(HAA5; ppb)³	12/2014	N	20.8	15.0 - 29.2	N/A	60	by-product of arinking water chlorination.

Lead and Copper (Tap Water)

Contaminant and Unit	Dates of	AL	90th %	Number of Sampling		
Of Measurement	Sampling	Violation	Results	sites exceeding AL	AL	Likely Source of Contamination
	(year)	Y/N				
Copper (tap water; ppm)	2014	N	0.082	•	1.3	Corrosion of household plumbing systems.
Lead (tap water; ppb)	2014	N	1.6	•	15	Corrosion of household plumbing systems.

1 Results in the Level Detected column for Inorganic Contaminants are the highest average detected at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency, except for RAA.

2 For Chloramimes the level detected is the highest Running Annual Average (RAA), computed quarterly, of the monthly averages of all samples collected.

3 For Haloacetic Acids (HAA5) and Total Trihalomethanes (TTHM), the level detected is the highest Locational Running Annual Average (LRAA), computed quarterly of all samples collected. Range of Results for Haloacetic Acids (HAA5) and Total Trihalomethanes (TTHM) is the range of individual sample results during 2014.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

LRAA (Locational Running Annual Average): The average of sample results taken at a particular monitoring location during the previous four calendar quarters.

MCL (Maximum Contaminant Level): The maximum permissible level of a contaminant in water which is delivered to any user of a public water system.

MCLG (Maximum Contaminant Level Goal): The maximum level of a contaminant in drinking water at which no known or anticipated adverse effect on the health of persons would occur, and which allows an adequate margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (**Not detected**): Indicates that the substance was not found by laboratory analysis.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

RAA (Running Annual Average): The average of all samples collected from all sample locations within a calendar year.

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.

What's Your Water Footprint?

You may have some understanding about your carbon footprint, but how much do you know about your water footprint? The water footprint of an individual, community, or business is defined as the total volume of freshwater that is used to produce the goods and services that are consumed by the individual or community or produced by the business. For example, 11 gallons of water are needed to irrigate and wash the fruit in one half-gallon container of orange juice. Thirty-seven gallons of water are used to grow, produce, package, and ship the beans in that morning cup of coffee. Two hundred and sixty-four gallons of water are required to produce one quart of milk and 4,200 gallons of water are required to produce two pounds of beef.

According to the U.S. EPA, the average American uses about 100 gallons of water daily. In fact, in the developed world, one flush of a toilet uses as much water as the average person in the developing world allocates for an entire day's cooking, washing, cleaning, and drinking. The annual American per capita water footprint is about 8,000 cubic feet; twice the global per capita average. With water use increasing six-fold in the past century, our demands for freshwater are rapidly outstripping what the planet can replenish.

To check out your own water footprint, go to www.h2oconserve.org or visit www.waterfootprint.org to see how the water footprints of other nations compare.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Use Water Wisely

- Avoid over-watering your lawn or garden. Using moisture sensors to determine watering needs is a better strategy than using a fixed schedule or estimating watering needs based on rainfall. In addition to wasting water, over-watering can increase leaching of fertilizers into groundwater, and can harm your lawn and plants.
- Water new trees and shrubs longer and less frequently than shallow-rooted plants, which require smaller amounts of water more often. Use soaker hoses or drip irrigation systems for trees and shrubs.
- Position automatic sprinklers to water the lawn and garden only-not the street or sidewalk.
- Water your lawn or garden during the coolest part of the day (early morning is best). Watering when it's hot and sunny is wasteful because most of the water evaporates before the plants have time to absorb it. Also avoid watering on windy days.
- When using a hose, control the flow with an automatic shut-off nozzle.
- Raise your lawn mower cutting height longer grass blades help shade each other, reduce evaporation, and inhibit weed growth.
- Incorporate compost into the soil to help improve water absorption and retention.
- Wash your bike or car with a bucket and sponge instead of a hose to save water. A hose can waste 6 gallons per minute if you leave it running, but using a bucket and sponge only uses a few gallons.
- Sweep driveways, sidewalks, and steps rather than hosing them off.